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SUMMARY

Predicted survival probability functions of censored event free survival are improved by bagging survival
trees. We suggest a new method to aggregate survival trees in order to obtain better predictions for
breast cancer and lymphoma patients. A set of survival trees based on B bootstrap samples is computed.
We de�ne the aggregated Kaplan–Meier curve of a new observation by the Kaplan–Meier curve of all
observations identi�ed by the B leaves containing the new observation. The integrated Brier score is
used for the evaluation of predictive models. We analyse data of a large trial on node positive breast
cancer patients conducted by the German Breast Cancer Study Group and a smaller ‘pilot’ study on
di�use large B-cell lymphoma, where prognostic factors are derived from microarray expression values.
In addition, simulation experiments underline the predictive power of our proposal. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The development of prognostic models is one of the major tasks in clinical oncology. The
identi�cation of risk groups of patients de�ned by values of certain prognostic factors is
of special importance. A medical decision, e.g. the application of a special treatment, may
depend on the patient’s prognosis. Prognostic factor studies for censored data are the basis
for the development of prognostic models in oncology [1].
Recursive partitioning procedures have been used for prediction of survival probabilities in

cancer research by various authors [1–3]. Several algorithms for recursive partitioning of a
censored response have been suggested [4–10]. Instability and variable selection bias are well
known problems of tree based methods. Lausen et al. [11] suggest a methodology for trees
that account for variables measured on di�erent scales. The adjusted P-value of a maximally
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selected logrank statistic [12] is used to adjust for the variable selection bias due to di�erent
scales and allows the trees to be stabilised. Kim and Loh [13] propose multiway splits to
adjust for the variable selection bias.
Bootstrap aggregation of classi�cation and regression trees (‘bagging’ [14, 15]) stabilizes

predictors in many applications. Bootstrapped Kaplan–Meier curves are studied by Efron [16]
and Akritas [17]. Sauerbrei [18] provides a recent overview on bootstrapping in survival
analysis. Dannegger [19] investigates the instability of trees with an application to survival
data of node negative breast cancer patients and averages the point predictions of survival
times in the nodes of multiple trees to stabilize the procedure. However, Graf et al. [2] claim
that point predictions of event free time in cancer patients did not lead to satisfactory results in
the past. Instead, the predicted survival probability function, that is, the predicted probability
of being event free up to time z, proved to be a useful prediction in oncology. Here, we
propose to derive the predicted survival probability function for a new patient as follows: �rst
a set of survival trees based on B bootstrap samples of the observations is constructed, and
second the bootstrap aggregated Kaplan–Meier curve of a new patient is computed for all
bootstrap observations identi�ed by the B leaves containing the new observation.
We study the improvement of predicted survival probability functions in cancer patients for

two types of cancer. First, a large study on node positive breast cancer patients with seven
prognostic factors [20] is used for the construction and evaluation of improved predictors.
Second, we analyse prognostic factors derived from gene expression pro�ling data for 38 pa-
tients su�ering di�use large B-cell lymphoma [21]. The choice of an appropriate criterion to
evaluate the predicted survival probability functions is not obvious. A comprehensive discus-
sion on this issue can be found in Henderson [22]. Based on a measure originally developed
for weather forecasts by Brier [23], Graf et al. [2] propose the integrated Brier score for
censored data which we use as a measure for goodness of prediction for the breast cancer
and lymphoma data sets.
The paper is structured as follows. The statistical and recursive partitioning framework is

reviewed in Sections 2 and 3 as much as required in the sequel. Bootstrap aggregated survival
trees are introduced in Section 4. Section 5 comments on the integrated Brier score and we
investigate the possible rates of improvement by means of a simulation study in Section 6.
The gain achieved for predicted survival probability functions in breast cancer and lymphoma
patients by bagging survival trees is analysed in Section 7.

2. STATISTICAL MODEL

Throughout this paper Z0 denotes the true survival time and C denotes the true censoring time
with distribution functions F and G, respectively. We observe Z = min(Z0; C), the time under
observation until either an event or censoring occurs. The variable �= I(Z06C) denotes the
indicator for an observed event, called the ‘censoring indicator’ and X=(X1; : : : ; Xp) denotes
a set of p covariables from a sample space �. The covariables can be measured at di�erent
scales. The conditional distribution function of true survival time given the covariables X is
denoted by FX. We observe a learning sample L= {(zi; �i;xi); i=1; : : : ; N} of N independent
observations consisting of p-dimensional covariables xi=(xi1; : : : ; xip), survival time zi and
censoring indicator �i. The observations in the learning sample are independent and identically
distributed random samples from the joint distribution function H of time under observation,
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censoring indicator and covariables:

(z1; �1;x1); : : : ; (zN ; �N ;xN )
iid∼ H

The marginal probability of being event free up to a time z¿0 is S(z)=P(Z0¿z)=1−F(z).
The Kaplan–Meier product limit estimator [24] can be used to estimate S(·). The Kaplan–
Meier curve computed using observations from a learning sample L is denoted
by ŜL(·). We assume random censorship, that is the independence of Z0 and C given the
covariables X.
The ‘patient speci�c’ survival probability function, i.e. the probability of being event free

up to time z, conditional on the vector of covariables X=x is

S(z|x)=P(Z0¿z|X=x)=1− FX(z)
With S(·|x) we denote the true conditional survival function. For a new patient with covariable
status xnew, the predicted survival probability function ŜL(z|xnew) of being event free up to
time z estimated from a learning sample L is of special interest.

3. SURVIVAL TREES

We review parts of the terminology of binary trees following the framework given in
Breiman et al. [25]. A binary tree is a set of q nodes and their edges. The nodes tj are
subsets of the sample space �. Based on a learning sample L, a splitting and a stopping rule,
a tree T (L)= {1; : : : ; q} is constructed. The elements of T (L) represent the nodes by their
indices. The set of terminal nodes or leaves, i.e. nodes that are not splitted, is denoted by
a subset of the tree T̃ (L) ⊂ T (L). The leaves are disjoint partitions of the whole sample
space � of the covariables:

�=
⋃

j∈T̃ (L)
tj and tj

⋂
tk = ∅ for all leaves j �= k ∈ T̃ (L)

In addition, we de�ne a function which identi�es the leaf of a tree T (L) for an observation
with covariable status x:

�(x;L)= tj where j∈ T̃ (L) and x∈ tj (1)

A predictor of the conditional survival function for a new patient with covariables xnew is
the Kaplan–Meier curve based on all observations from the learning sample L which are part
of the same leaf as xnew itself:

ŜL(·|xnew)= ŜL(x new)(·)
L(xnew) denotes a subset of the learning sample, i.e. the subset of observations from L
within the same leaf of the tree TL as an observation with covariables xnew:

L(xnew)= {(zi; �i;xi)∈L|xi ∈ �(xnew;L)} (2)

In general, two approaches are used for building survival trees. The �rst one uses a measure
of within-node homogeneity, for example, the distance between Kaplan–Meier estimates of
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the survival curves [4] or a measure based on Poisson deviance residuals [8]. The second
approach is based on a measure of between-node separation by using a test statistic to dis-
tinguish between survival times [6, 9, 11]. In this paper, we do not focus on special splitting
or stopping criteria but de�ne bootstrap aggregated (bagged) survival trees for arbitrary tree
growing algorithms. For the computations in Sections 6 and 7, a criterion equivalent to the
one suggested by LeBlanc and Crowley [8] is used.

4. BAGGING SURVIVAL TREES

Breiman [15] calls a tree unstable if small perturbations in the learning sample L induce a
large change in the resulting predictor T (L). A more formal de�nition of stability is given by
B�uhlmann and Yu [26]. A stable predictor converges to some �xed value as the sample size N
tends to in�nity, whereas an unstable predictor does not. The stability of a predicted survival
probability function derived from a survival tree may be a�ected by small learning samples,
a large number of covariables or a small e�ect to noise ratio. The aggregation of multiple
unstable predictors leads to a stabilization in many classi�cation and regression problems.
Here, we propose an aggregation scheme for survival trees.
Under a completely speci�ed statistical model we are able to draw in�nitely many learning

samples L1;L2; : : : of size N from H . We are interested in an estimate of the true conditional
survival function S(·|xnew), where xnew is a �xed vector of p covariables. It is therefore
natural to compute an estimate Ŝ(·|xnew) based on observations with covariable values that
are ‘close’ to xnew, i.e. observations which are elements of the same leaf of a survival tree as
xnew itself. Consequently, for each of those learning samples, a survival tree T (Lb); b=1; 2; : : :
is constructed. The subset of the learning sample Lb(xnew) as de�ned in (2) is the set of all
observations from Lb which are elements of the leaf �(xnew;Lb). Now, we have a number
of subgroups Lb(xnew); b=1; 2; : : : and join their matrix representations into the aggregated
sample LA

LA(xnew)= [L1(xnew);L2(xnew); : : :]

An aggregated estimator of S(·|xnew) is the Kaplan–Meier curve for the observations of the
aggregated subgroups

ŜA(·|xnew)= ŜLA(x new)(·)
In contrast to aggregated classi�cation trees [14, 15], where the predictions of each tree are
aggregated by majority voting, we aggregate the observations from each leaf directly and
compute one single predictor for the aggregated sample only.
Having one learning sample L of size N we estimate the aggregated survival function

ŜA(·|xnew) using the bootstrap. First, we consider bootstrap learning samples

L∗(b) = {(z∗(b)i ; �∗(b)
i ;x∗(b)

i ); i=1; : : : ; N}; b=1; 2; : : :

from the empirical joint distribution Ĥ . The subsets of the bootstrap samples

L∗(b)(xnew)= {(z∗(b)i ; �∗(b)
i ;x∗(b)

i )∈L∗(b)|x∗(b)
i ∈ �(xnew;L∗(b))}
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are the subsets of observations from L∗(b) within the same leaf as xnew. Here �(xnew;L∗(b))
refers to a leaf of the survival tree T (L∗(b)), constructed on the bootstrap sample L∗(b) as
de�ned in (1).
A bootstrap aggregated version of the estimated conditional survival function Ŝ can be

de�ned as

Ŝ∗
A (·|xnew)= ŜL∗

A (x new)(·)
i.e. the Kaplan–Meier curve based on the bootstrap aggregated subgroups

L∗
A (xnew)= [L

∗(1)(xnew);L∗(2)(xnew); : : :]

The bootstrap aggregated conditional survival function Ŝ∗
A (·|xnew) is approximated by a

�nite number B of bootstrap learning samples as follows:

(1) Draw B bootstrap samples of size N with replacement from L and denote them by
L∗(1); : : : ;L∗(B).

(2) Construct a survival tree T (L∗(b)) based on each bootstrap sample L∗(b).
(3) Compute the bootstrap aggregated survival function for a new observation xnew by

ŜBA (·|xnew)= ŜLB
A (x new)

(·)
where

LB
A (xnew)= [L

∗(1)(xnew);L∗(2)(xnew); : : : ;L∗(B)(xnew)]

5. GOODNESS OF PREDICTION

In the classi�cation and regression framework, the goodness of prediction is measured by
the misclassi�cation error or mean squared error. However, there is no obvious goodness of
prediction criterion for predicted survival probability functions. Several proposals have been
studied [27, 28], see Henderson [22] for a review. We use the integrated Brier score for
censored data as introduced by Graf et al. [2]. Ĝ(z) denotes the Kaplan–Meier estimate of
the censoring distribution, that is the Kaplan–Meier estimate based on observations (zi; 1−�i);
i=1; : : : ; N (in the absence of ties between censored and uncensored observations). The Brier
score as a function of time z¿0 is de�ned by

BS(z)=
1
N

N∑
i=1
(Ŝ(z|xi)2I(zi6z ∧ �i=1)Ĝ(zi)−1 + (1− Ŝ(z|xi))2I(zi¿z)Ĝ(z)−1)

and the integrated Brier score is given by

IBS= max(zi)−1
∫ max(zi)

0
BS(z) dz

We use cross-validation to estimate the integrated Brier score for the data in Section 7.
For the simulation experiments in the next section, where the true conditional survival

function S(z|x) is known, we measure the distance between the predicted and true conditional
survival probability function by a similar criterion. In analogy to the Brier score, the squared
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di�erence between the two curves is integrated with respect to time and averaged over all
observations (mean integrated squared error, MIE):

MIE=
1
N

N∑
i=1
(z∗i )

−1
∫ z∗i

0
(ŜL(z|xi)− S(z|xi))2 dz

where z∗i denotes the time of the last event in L(xi).

6. SIMULATION STUDY

6.1. Setup

The rate of improvement with respect to prediction error by bagging survival trees compared
to single survival trees is investigated in two simulation setups. The �rst setup is similar
to con�gurations used in LeBlanc and Crowley [9] or Kele�s and Segal [10]. Five indepen-
dent predictors X1; : : : ; X5 are uniformly distributed on [0; 1]. Survival times are exponentially
distributed with conditional survival function S(z|x)= exp(−z�x) according to three models
with logarithms of the hazards #x= log(�x):

A: #x=0

B: #x=3I(X160:5 ∩ X2¿0:5)
C: #x=3X1 + X2

In model B, two risk groups are de�ned in terms of a tree with three leaves induced by
the predictors X1 and X2. The risk in model C depends on a linear combination of X1 and
X2. Censoring times are distributed uniformly on [0; �]. Uncensored learning samples as well
as learning samples with approximately 25 and 50 per cent censored observations are used,
the sample size is N =200. See Table I for values of the censoring parameter � used in the
di�erent setups.
In the second setup we study the performance of bagging survival trees for seven risk

groups de�ned by the predictors X1; : : : ; X5 from above. The underlying tree is displayed in
Figure 1. Di�erent numbers of non-informative covariables are added to the �ve predictors
in the learning sample (none, 10 and 20), each of them uniformly distributed on [0; 1]. The
number of observations in the learning sample is N =200, approximately 50 per cent of
them censored. The logarithms of the hazards of the risk groups are scaled by an additional

Table I. Values of the censoring parameter � used in the simulations.

Setup 1 Setup 2
Censoring
(per cent) A B C c=0:5 c=1 c=2

25 4.02 2.87 0.68 — — —
50 1.59 0.94 0.21 0.90 0.51 0.18

Censoring times are uniformly distributed on [0; �] with � computed depending on the model
and amount of censoring.
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Figure 1. Tree model: seven risk groups based on �ve informative covariables X1; : : : ; X5.

parameter c¿0 and the conditional survival function is

S(z|x)= exp(−z�x; c) with c · #X= log(�x; c)

Since the conditional survival function S(z|x) is known in simulation experiments, the mean
integrated squared error as a measurement of goodness of prediction is computed by numerical
integration. The goodness of prediction for single and aggregated trees is evaluated using an
independent test sample of size 100. In addition, the mean integrated squared error is reported
for the simple Kaplan–Meier curve, i.e. an estimator without knowledge of the information
in the covariables. We report the median of the mean integrated squared error as well as the
interquartile range for 1000 Monte-Carlo replications of learning and test sample in Tables II
and III.
The rpart package [29] in the R system for statistical computing [30] is used for the

construction of survival trees. The splitting criterion implemented in rpart is equivalent to
the one described in LeBlanc and Crowley [8]. Single trees are pruned to an appropriate size
in order to avoid instability induced by over sized trees. For models A–C, splits that improve
the full likelihood deviance by an amount of less than 10 per cent are removed from the tree.
For the tree model, an amount of 2 per cent improvement is required for a split to be done;
the average number of nodes of the single survival trees is reported in Table III. In contrast,
each of the B=50 trees for bagging is relatively large. We stop the tree growth when less
than 20 observations are element of a node or if a split does not improve the full likelihood
deviance by an amount of at least 1 per cent. For models A and B, less extreme trees are
used for aggregation: splits with an improvement of less than 10 per cent (model A) and 5
per cent (model B) are removed from each of the multiple trees. Those values are obtained
by independent simulation experiments.
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Table II. Median of mean integrated squared errors (×100 for model A and ×10 for B
and C) for the three models of the �rst setup for 1000 pairs of learning and test samples

of size 200 and 100.

Censoring

Model None 25 per cent 50 per cent

Kaplan–Meier 0.031 (0.037) 0.096 (0.104) 0.127 (0.151)
Survival tree 0.031 (0.038) 0.096 (0.104) 0.127 (0.151)

A Bagging 0.032 (0.037) 0.097 (0.107) 0.132 (0.160)
Relative improvement (per cent) −6 −1 −4

Kaplan–Meier 0.152 (0.045) 0.314 (0.053) 0.727 (0.114)
Survival tree 0.053 (0.068) 0.077 (0.085) 0.099 (0.106)

B Bagging 0.026 (0.021) 0.054 (0.039) 0.096 (0.070)
Relative improvement (per cent) 50 30 3

Kaplan–Meier 0.130 (0.056) 0.392 (0.061) 0.581 (0.068)
Survival tree 0.109 (0.039) 0.204 (0.054) 0.231 (0.070)

C Bagging 0.051 (0.023) 0.115 (0.049) 0.183 (0.074)
Relative improvement (per cent) 54 44 21

Interquartile range given in parentheses. Bagging with B=50 bootstrap samples.

Table III. Median of mean integrated squared error (×10) for the tree model of the second setup
for 1000 pairs of learning and test samples of size 200 and 100.

c=0:5 c=1 c=2

Kaplan–Meier 0.234 (0.024) 0.697 (0.048) 1.482 (0.072)

Five informative covariables only (p= 5)
Median number of nodes 6 6 6
Survival tree 0.363 (0.215) 0.359 (0.166) 0.318 (0.149)
Bagging 0.226 (0.071) 0.246 (0.079) 0.230 (0.098)
Relative improvement (per cent) 38 31 28

10 Non-informative covariables added (p= 15)
Median number of nodes 10 9 7
Survival tree 0.689 (0.236) 0.587 (0.219) 0.397 (0.200)
Bagging 0.231 (0.085) 0.281 (0.083) 0.281 (0.110)
Relative improvement (per cent) 66 52 29

20 Non-informative covariables added (p= 25)
Median number of nodes 12 10 8
Survival tree 0.831 (0.227) 0.705 (0.224) 0.457 (0.230)
Bagging 0.225 (0.088) 0.282 (0.089) 0.300 (0.121)
Relative improvement (per cent) 73 60 34

Interquartile range given in parentheses. Bagging with B=50 bootstrap samples. In addition, the median
number of nodes in each of the single trees in reported.
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Figure 2. Boxplots of the relative improvement of mean integrated squared error of 1000
simulation runs for models A–C and three levels of censoring. The relative improvement
is given by the di�erence of the error of single survival trees and bagging relative to the
error of survival trees. The learning samples are of size N =200. One hundred and �fty
�ve extreme values with less then −150 per cent improvement are not shown here.

6.2. Results

In all simulation setups described above, the mean integrated squared error of bagging survival
trees is either better or as good as the error for single survival trees. The relative reduction
depends on the model, the amount of censoring and the number of non-informative covariables
in the learning sample.
For model A, where the survival time does not depend on any of the covariables, both

single survival trees and bagging are as good as the Kaplan–Meier curve of the learning
sample. The majority of the single trees are trivial, i.e. no split. The trees for bagging are
pruned to a medium depth.
The relative improvement by bagging compared to single trees ranges between 3 and 50 per

cent for model B. The single survival trees usually split into three terminal nodes and therefore
are able to identify the underlying tree structure and improve upon the simple Kaplan–Meier
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curve. Aggregating multiple trees leads to further improvement: the di�erence between the
mean integrated squared error of a single survival tree and bagging relative to the error of a
single survival tree is up to 50 per cent smaller for bagging. Moreover, the variance of the
prediction error estimated by the interquartile range is much smaller for bagging.
When the risk depends on a linear combination of covariables as in model C, the relative

improvement is between 21 and 54 per cent. The single trees are not able to search in
linear combinations while the aggregation of multiple large trees is able to adapt itself to this
situation. Figure 2 provides a graphical representation of the relative gain by bagging survival
trees for models A–C.
In the second setup, where the risk groups depend on the tree displayed in Figure 1, the

separation between the risk groups is scaled by c=0:5; 1 and 2. The sample size of N =200 is
relatively small for a complex tree. The amount of 50 per cent censoring is relatively large but
this setup is likely to be relevant in practical situations. The e�ect of instability is studied by
adding up to 20 non-informative covariables to the learning sample. In contrast to unbagged
survival trees, the goodness of �t of bagged survival trees is scarcely a�ected by the number
of non-informative covariables (0.226 for �ve informative covariables compared to 0.231 with
10 and 0.225 with 20 additional non-informative covariables, c=0:5). The integrated squared
error of single survival trees is always larger than that of the Kaplan–Meier curve (0.234), i.e.
the prediction is even worse. However, bagging performs comparable to the Kaplan–Meier
curve for c=0:5. Detailed results, including the median number of terminal nodes of the
single trees, are given in Table III. The number of leaves ranges between 6 and 12 and
shows that the single trees are able to identify the tree shown in Figure 1.
If the risk groups are better separated by c=1 or 2, survival trees improve upon the Kaplan–

Meier curve. The relative improvement for bagging compared to survival trees ranges from
28 per cent (c=2, 5 informative covariables only) to 73 per cent (c=1, 20 non-informative
covariables). Boxplots of the relative improvement for the tree model in all three situations
under test are displayed in Figure 3. It should be noted that both the median prediction error
and its variance are reduced by bagging, indicating the e�ect of stabilisation achieved here.

7. DATA

The prediction of survival probability functions based on the values of certain prognostic
factors is a major issue in oncology. We therefore investigate the gain of bagging survival
trees for data of breast cancer patients with positive lymph nodes and for gene expression
pro�ling data of patients with di�use large B-cell lymphoma (DLBCL). The learning sample
in the breast cancer study has 686 observations. In contrast, we analyse a small data set of
38 patients su�ering from DLBCL.

7.1. Breast cancer: GBSG-2 study

A prospective, controlled clinical trial on the treatment of node positive breast cancer patients
was conducted by the German Breast Cancer Study Group (GBSG-2), a detailed description
of the study is given in Schumacher [20]. Patients not older than 65 years with positive
regional lymph nodes but no distant metastases were included in the study. Complete data of
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Figure 3. Boxplots of the relative improvement of mean integrated squared error of 1000 sim-
ulation runs for the tree model (cf. Figure 1). The hazards are scaled by three di�erent values
of c and di�erent numbers of covariables p are investigated. The learning samples are of size
N =200 and roughly 50 per cent of the observations are censored. One hundred and sixty seven

extreme values with less then −50 per cent improvement are not shown here.

seven prognostic factors of 686 women are used in Sauerbrei and Royston [31] for prognostic
modelling, the data set is available online at http://www.blackwellpublishers.com/rss/.
Observed hypothetical prognostic factors are age, menopausal status, tumour size, tumour

grade, number of positive lymph nodes, progesterone receptor, estrogen receptor and the in-
formation of whether or not a hormonal therapy was applied. Table IV gives characteristics
of the patients in the study.
Survival trees using p-value adjusted logrank statistics [11] are used for the evaluation of

prognostic factors in the GBSG-2 study by Schumacher et al. [1]. The goodness of prediction
of several prognostic models including survival trees for a similar study on node negative
breast cancer patients is investigated in Graf et al. [2]. Ten independent runs of the 10-fold
cross-validated integrated Brier score are averaged and reported here. The single survival trees
are pruned to trees with, on average, six terminal nodes. For bagging, B=50 unpruned large
trees are used. The integrated Brier score for survival trees is 0.173. Bagging survival trees
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Table IV. Patient characteristics in GBSG2-Study.

Prognostic factor Median First and Third quartile

Age (years) 53 46 61
Tumor size (mm) 25 20 35
No. of positive lymph nodes 3 1 7
Progesterone receptor (fmol) 32.5 7 131.75
Estrogen receptor (fmol) 36 8 114

Levels No. of observations
Menopausal status Pre 290

Post 396
Tumor grade I 81

II 444
III 161

Hormonal therapy Yes 246
No 440

For ordered covariables, the median as well as the �rst and third quartile are given whereas the
number of observations for each level is reported for unordered factors.

improve the accuracy by 6 per cent: the integrated Brier score for bagged survival trees is
0.163. The integrated Brier score when the overall Kaplan–Meier curve is used as predictor
for each observation is 0.189.

7.2. DLBCL

Using di�erent expression patterns of the genome it is an interesting and straightforward
hypothesis to assess types of a disease on the molecular level. Alizadeh et al. [21] analyse
the overall survival of patients with di�use large B-cell lymphoma (DLBCL) and show that
it is possible to identify two distinct types of DLBCL by gene expression pro�ling. They
use a microarray with genes that are expressed in lymphoid cells and genes with known or
suspected roles in processes important in immunology and cancer. Overall they use 17 856
cDNA clones and 96 normal and malignant lymphocyte tissue samples. The �rst step of the
data analysis (cf. Eisen [32]) is to identify each spot on the microarray and to classify the
spot pixels and the background pixels. The ratio of the red and green �uorescence can be
estimated. We use the simple robust estimate MRAT of Eisen et al. [33] which is de�ned as
the median of the ratio for each spot pixel. Each spot value is centred by the median of the
background pixels. The data is available at http://llmpp.nih.gov/lymphoma/. We use the
mean expression values for genes which are expressed by two or more di�erent cDNA clones.
Restricting the analysis to complete data, i.e. expression spot available for each combination
of gene and tissue sample and survival times observed, we analyse data of 7680 marker
genes and 38 tissue samples. Analysing the response lymphoma classi�cation, Dudoit et al.
[34] use 81 tissue samples to compare classi�cation trees, bagged classi�cation trees and other
discrimination methods.
We derive hypothetical prognostic factors by using 10 clusters estimated with the agglomer-

ative average linkage hierarchical cluster analysis. We compute the Euclidean distance for the
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logarithm of the MRAT values (MRAT+ 0:01) for the marker genes. We analyse a partition
of the marker genes in 10 clusters, which is de�ned by a cluster level of the dendrogram
resulting in a partition of 10. The mean gene expression for each cluster is the computed
value of each prognostic factor. Because of the small number of observations, the nodes of
the single and multiple trees are allowed to split if they contain more than four observations.
The integrated Brier score of the overall Kaplan–Meier curve itself is 0.231. We obtain the
integrated Brier score 0.225 for survival trees and 0.233 for our proposal of bagging sur-
vival trees (with B=50 bootstrap samples): neither single survival trees nor bagging lead
to an improvement with respect to the integrated Brier score in this situations. If the In-
ternational Prognostic Index is used as additional covariable, the integrated Brier score is
0.279 for survival trees and 0.214 for bagged survival trees, which is a reduction of about 25
per cent.

8. DISCUSSION

We suggest a method to aggregate survival trees. In contrast to aggregation by majority
voting or averaging of the predictions in classi�cation or regression problems, averaged point
predictions, e.g. the median of an estimated survival probability function, are of minor interest
in clinical oncology [2]. Instead, the predicted conditional survival probability function for
a new patient is more informative. Therefore, we do not aggregate point predictions but
predict the conditional survival probability function by computing one single Kaplan–Meier
curve based on observations identi�ed by the leaves of B bootstrap survival trees. Although
aggregation leads to improved predictions for cancer patients as shown in this paper, it is
a ‘black box’ of multiple trees. As a remedy, graphical methods like importance plots [25]
are used for aggregated predictors by Breiman [35] and Friedman [36] and may be used for
bagged survival trees as well. However, our predictor is based on similar patients and the
degree of similarity can be described by repetitions of a patient from a learning sample in
the aggregated set.
Bagging survival trees depends on two parameters: the number of bootstrap samples B and

the size of the multiple trees. The mean integrated squared errors for di�erent numbers of
bootstrap samples for one con�guration of the tree model as given in Figure 4 indicate that
more than B=50 trees do not lead to further improvements here.
Except for the arti�cial models A and B, we use rather large trees for aggregation. However,

the choice of the appropriate tree size, i.e. small, medium or large, for bagging survival trees
remains a matter of debate.
For survival trees, the estimated conditional survival function is consistent as the number of

observations tends to in�nity as shown by LeBlanc and Crowley [9]. For a di�erent resampling
plan (‘subagging’: m-out-of-N without replacement), B�uhlmann and Yu [26] show analytically
that subagging reduces the mean squared error due to smoothing split points in regression trees.
Although the general setup is the same, it is unclear how predictions for censored data can
�t into this framework.
The procedure suggested in this paper is implemented in the ipred package [37]. Besides

bagging survival trees, the package implements functions for the computation of the Brier
score and its integrated version and includes example calculations for the data used in this
paper. The ipred package is available at http://CRAN.R-project.org.
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Figure 4. Boxplots of the mean integrated squared errors (×10) for the tree model (c=2,
p=25, i.e. 20 non-informative variables) for di�erent values of B. The dotted line gives

the estimated error for a single survival tree.

ACKNOWLEDGEMENTS

Comments by an anonymous referee helped us to improve the design of the simulation experiments and
the presentation of the results. We thank Terry Therneau, Robin Henderson, Norbert H�ollander, Willi
Sauerbrei, Martin Schumacher and Werner Vach for fruitful discussions of the paper and underlying
ideas. Hints by Janice Hegewald led to an improved readability.

REFERENCES

1. Schumacher M, Holl�ander N, Schwarzer G, Sauerbrei W. Prognostic factor studies. In Statistics in Oncology,
Crowley J (ed.). Marcel Dekker: New York, Basel, 2001; 321–378.

2. Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classi�cation
schemes for survival data. Statistics in Medicine 1999; 18:2529–2545.

3. LeBlanc M. Tree-based methods for prognostic strati�cation. In Statistics in Oncology, Crowley J (ed.). Marcel
Dekker: New York, Basel, 2001; 457–472.

4. Gordon L, Olshen R. Tree-structured survival analysis. Cancer Treatment Reports 1985; 69:1065–1069.
5. Ciampi A, Chang C, Hogg S, McKinney S. Recursive partition: a versatile method for exploratory data analysis
in biostatistics. In Proceedings from Joshi Festschrift, Umphrey G (ed). North-Holland: Amsterdam, 1987;
23–50.

6. Segal MR. Regression trees for censored data. Biometrics 1988; 44:35–47.
7. Davis RB, Anderson JR. Exponential survival trees. Statistics in Medicine 1989; 8:947–961.
8. LeBlanc M, Crowley J. Relative risk trees for censored survival data. Biometrics 1992; 48:411–425.
9. LeBlanc M, Crowley J. Survival trees by goodness of split. Journal of the American Statistical Association
1993; 88:457–467.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:77–91



BAGGING SURVIVAL TREES 91

10. Kele�s S, Segal MR. Residual-based tree-structured survival analysis. Statistics in Medicine 2002; 21:213–326.
11. Lausen B, Sauerbrei W, Schumacher M. Classi�cation and regression trees (CART) used for the exploration of

prognostic factors measured on di�erent scales. In Computational Statistics, Dirschedl P, Ostermann R (eds).
Physica-Verlag: Heidelberg, 1994; 483–496.

12. Lausen B, Schumacher M. Maximally selected rank statistics. Biometrics 1992; 48:73–85.
13. Kim H, Loh WY. Classi�cation trees with unbiased multiway splits. Journal of the American Statistical

Association 2001; 96:589–604.
14. Breiman L. Bagging predictors. Machine Learning 1996; 24:123–140.
15. Breiman L. Arcing classi�ers. The Annals of Statistics 1998; 26:801–824.
16. Efron B. Censored data and the bootstrap. Journal of the American Statistical Association 1981; 76:312–319.
17. Akritas MG. Bootstrapping the Kaplan–Meier estimator. Journal of American Statistical Association 1986;

81:1032–1038.
18. Sauerbrei W. Bootstrapping in survival analysis. In Encyclopedia of Biostatistics, Armitage P, Colton T (eds).

Wiley: Chichester, New York, 1998; 433–436.
19. Dannegger F. Tree stability diagnostics and some remedies for instability. Statistics in Medicine 2000; 19:

475–491.
20. Schumacher M, Basert G, Bojar H, H�ubner K, Olschewski M, Sauerbrei W, Schmoor C, Beyerle C, Neumann

RLA, Rauschecker HF for the German breast cancer study group. Randomized 2×2 trial evaluating hormonal
treatment and the duration of chemotherapy in node-positive breast cancer patients. Journal of Clinical Oncology
1994; 12:2086–2093.

21. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X,
Powell JI, Yang L, Marti GE, Moore T, Hudson J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC,
Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D,
Brown PO, Staudt LM. Distinct types of di�use large B-cell lymphoma identi�ed by expression pro�ling. Nature
2000; 403:503–511.

22. Henderson R. Problems and prediction in survival-data analysis. Statistics in Medicine 1995; 14:161–184.
23. Brier GW. Veri�cation of forecasts expressed in terms of probability. Monthly Weather Review 1950; 78:1–3.
24. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the American

Statistical Association 1958; 53:457–481.
25. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classi�cation and Regression Trees. Wadsworth: California,

1984.
26. B�uhlmann P, Yu B. Analyzing bagging. The Annals of Statistics 2002; 30:927–961.
27. Korn EL, Simon R. Measures of explained variation for survival data. Statistics in Medicine 1990; 9:487–503.
28. Altman DG, Royston P. What do we mean by validating a prognostic model? Statistics in Medicine 2000;

19:453–473.
29. Therneau T, Atkinson E. An introduction to recursive partitioning using the rpart routine. Technical Report 61,

Section of Biostatistics, Mayo Clinic, Rochester, 1997.
30. Ihaka R, Gentleman R. R: A language for data analysis and graphics. Journal of Computational and Graphical

Statistics 1996; 5:299–314.
31. Sauerbrei W, Royston P. Building multivariable prognostic and diagnostic models: transformation of the

predictors by using fractional polynomials. Journal of the Royal Statistical Society, Series A 1999; 162:
71–94.

32. Eisen M. ScanAlyse User Manual. Stanford University: Stanford, CA, U.S.A., 1998.
33. Eisen M, Spellman P, Brown P, Botstein D. Cluster analysis and display of genome-wide expression patterns.

Proceedings of the National Academy of Science 1998; 95:14 863–14 868.
34. Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classi�cation of tumours using

gene expression data. Journal of the American Statistical Association 2002; 97:77–87.
35. Breiman L. Random forests. Machine Learning 2001; 45:5–32.
36. Friedman JH. Greedy function approximation: a gradient boosting machine. The Annals of Statistics 2001;

29:1189–1202.
37. Peters A, Hothorn T, Lausen B. ipred: improved predictors. R News 2002; 2:33–36 (ISSN 1609–3631).

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:77–91


