
Relative Risk Trees for Censored Survival Data
Author(s): Michael LeBlanc and John Crowley
Source: Biometrics, Vol. 48, No. 2 (Jun., 1992), pp. 411-425
Published by: International Biometric Society
Stable URL: http://www.jstor.org/stable/2532300 .

Accessed: 27/05/2013 09:07

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

International Biometric Society is collaborating with JSTOR to digitize, preserve and extend access to
Biometrics.

http://www.jstor.org 

This content downloaded from 200.17.213.161 on Mon, 27 May 2013 09:07:48 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=ibs
http://www.jstor.org/stable/2532300?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


BIOMETRICS 48, 411-425 
June 1992 

Relative Risk Trees for Censored Survival Data 

Michael LeBlanc 

Department of Preventive Medicine and Biostatistics, University of Toronto, 
Toronto M5S 1A8, Canada 

and 

John Crowley 

Fred Hutchinson Cancer Research Center, 1 124 Columbia Street, 
Seattle, Washington 98104, U.S.A. 

SUMMARY 

A method is developed for obtaining tree-structured relative risk estimates for censored survival data. 
The first step of a full likelihood estimation procedure is used in a recursive partitioning algorithm 
that adopts most aspects of the widely used Classification and Regression Tree (CART) algorithm of 
Breiman et al. (1984, Classification and Regression Trees, Belmont, California: Wadsworth). The 
performance of the technique is investigated through simulation and compared to the tree-structured 
survival methods proposed by Davis and Anderson (1989, Statistics in Medicine 8, 947-961) and 
Therneau, Grambsch, and Fleming (1990, Biomnetrika 77, 147-160). 

1. Introduction 

Tree-based methods for regression, and especially classification, are becoming popular 
alternatives to linear regression and linear discriminant analysis. Trees generally require 
fewer assumptions than classical methods and handle a wide variety of data structures. 
They provide another way of understanding the predictive structure of the data for both 
statistically and nonstatistically oriented researchers. These methods (often called recursive 
partitioning) were originally developed by Morgan and Sonquist (1963); the Classification 
and Regression Tree (CART) algorithm and monograph of Breiman et al. (1984) greatly 
advanced the technology, and stimulated wide interest in tree-based techniques. 

Tree-based methods adaptively partition the covariate space into regions and the data 
into groups. For each ordered covariate and split of the form "Xj < c or Xj > c" some 
measure of separation in the response distribution (for instance, a likelihood ratio test 
statistic) between the two groups is calculated. More general splits are possible for non- 
ordered categorical variables. The covariate and the split point that best separates the 
groups are chosen and this same procedure is applied recursively to the resulting groups 
until many disjoint regions, each containing only a few observations, have been formed. 
The resulting model can be represented as a binary tree. After a large tree is grown, there 
are rules for recombining nodes and for choosing the size of the tree. While we review 
aspects of tree-based methods necessary to describe our procedure, for an extensive 
discussion see Breiman et al. (1984). 

Tree-based methods could be a useful alternative to the classical linear proportional 
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412 Biometrics, June 1992 

hazards model of Cox (1972) for the exploration of survival data. The partitioning of the 
covariate space creates "bins" of observations that are assumed to be approximately 
homogeneous. This permits the use of one-sample tools for censored survival, such as the 
Kaplan-Meier estimator or other simple functionals such as quantiles, to compare prognosis 
between the "bins" represented by nodes in the tree. Also, the combination of binning and 
the interpretability of the tree-structured description make recursive partitioning well suited 
for developing prognostic stratifications that are used in the design of clinical trials. Several 
tree-based tools have been proposed for censored survival data (Gordon and Olshen, 1985; 
Ciampi et al., 1986; Segal, 1988; Davis and Anderson, 1989). 

Our tree-structured method adopts the proportional hazards model which specifies the 
following hazard function at time t, for an individual with covariate vector x: 

X(tIx) = Xo(t)s(x), 

where s(x) , 0 and Xo(t) is the baseline hazard. Traditionally s(x) is a log-linear function 
of a vector of parameters, but recently the model has been extended to include nonpara- 
metric covariate effects. The linear function is typically replaced by an additive function 
(Tibshirani and Hastie, 1987; O'Sullivan, 1988; Gentleman and Crowley, 1991). We will 
present a method for obtaining tree structures that represent the relative risk function, s(x). 

Since recursive partitioning involves evaluation of a large number of splits, iterative 
computation at each split point would typically not be computationally feasible, especially 
if tree-based modeling is to be carried out in an interactive data analysis environment as 
proposed by Becker, Clark, and Pregibon (1989) and LeBlanc (1990). Therefore, the method 
grows and prunes a tree using only the first step of a full likelihood estimation procedure 
for the proportional hazards model. After a tree is chosen, full likelihood estimates are 
obtained by iteration. 

We adopt much of the CART "engineering" of Breiman et al. (1984), the current 
standard for recursive partitioning algorithms. This methodology includes the cost- 
complexity pruning algorithm, which efficiently yields trees that perform best in terms of 
residual error (deviance for our model) for their size. In addition, the tree-growing process 
is cross-validated to estimate prediction error for a sequence of models. The tree model 
that minimizes or comes close to minimizing estimated prediction error is chosen. In these 
respects our algorithm is similar to some other proposals that extend the CART algorithm 
to right-censored data. Gordon and Olshen (1985) use distances between estimated distri- 
bution functions based on Lp and Lp Wasserstein metrics, and Davis and Anderson (1989) 
use exponential log-likelihood to define cost for a node. However, while the one-step full 
likelihood method is similar to these other two methods, it has the advantage of being 
based on the popular proportional hazards model. It should be more generally applicable 
than the method based on parametric exponential likelihood, and it is as easy to implement 
and as computationally efficient. Other tree-based methods for survival data proposed by 
Segal (1988) and Ciampi et al. (1986) are also interpretable but are different in spirit since 
they are based solely on between-node separation based on two-sample log-rank test 
statistics rather than some measure of within-node error such as deviance; since the methods 
do not use a within-node measure of error, they propose alternatives to the CART pruning 
algorithm and to cross-validation to select tree size. 

We present the results of a simulation study that investigates the performance of the full 
likelihood method and compares it to the performance of the exponential likelihood-based 
method of Davis and Anderson (1989) and a proposal of Therneau, Grambsch, and 
Fleming (1990), who use martingale-type "residuals" directly in the CART regression 
algorithm. Finally, an example is given based on data from a randomized clinical trial. 
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Relative Risk Trees for Censored Survival Data 413 

2. The Likelihood 

We assume that data include failure time measurements and additional measurements 
(covariates) that may be associated with failure time. An observation will be distributed as 
the vector (T, 6, X), where T is the time under observation, 6 is an indicator of failure, and 
X = (XI, X2, . . ., XM) is a vector of M covariates. Suppose U is the true survival time 
having cumulative distribution function F, and Vis the true censoring time with cumulative 
distribution function G. Let 6 = Iuv, where I.I is the indicator function of the set { }, 
and the observed time, T = min( U, V). Assume also that the U and V are independent 
given X. The learning sample consists of the set of independent, identically distributed 
vectors {(t1, 6, xi): i = 1, 2, . . . , NJ. 

Typically inference for the proportional hazards model is based on the partial likelihood. 
However, if the baseline cumulative hazard is known, estimation and model selection based 
on the full likelihood are desirable. The full likelihood of the learning sample for a tree T 
can be expressed as 

L =XI I s(tif6e- 
h ET iESI, 

where T is the set of terminal nodes; SI, is the set of observation labels, { i: xi E Xhl, for 
observations in the region Xh corresponding to node h; (ti, &j) is the vector of observation 
time and failure indicator for individual i; and Xh(t) and Ah(t) are the hazard and cumulative 
hazard functions for node h. Assume that the proportional hazards model 

Xh(t) = OhXO(t) 

is true, where ah is a nonnegative parameter and Xo(t) is the baseline hazard. It follows that 
the likelihood for the data given tree T is 

L = 17 17 (Xo(ti)Xh) ie oi)h, 
hE T iESh 

where Ao(t) is the baseline cumulative hazard function. Given the baseline cumulative 
hazard, the maximum likelihood estimates of {IO: h E TI are 

ZiESl, &i 
h = 

iE=-SI, Ao(ti) 

In practice, the cumulative hazard is not known. However, a natural estimator of the 
cumulative hazard given estimates Oh, 

Ao(t)= E 
L~itEeiT Ei:tj-tjiES1,2 Oh 

is due to Breslow' (1972). It can be shown that if A(t) is replaced by AO(t) in the full 
likelihood score equations, one obtains the partial likelihood score equations. An alternating 
estimation procedure can be used to estimate AO(t) and the {0h: h E TP. First the Breslow 
cumulative hazard estimate for iteration j, 

Ao(t) = E I in (1) 
i:tj--t Lhei Ei:tj-tjiE-Sh ajh 

is calculated using the current estimates, a4h, of Oh. Next, the estimate OAj/ of Oh, 

fit= I ,(2) 
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is calculated using the current estimate AJO(ti). The two steps are repeated until convergence. 
At convergence, the estimates of {6,,: h E T} are not uniquely defined; only the ratios of 
the estimates between nodes are unique. This technique was used by Clayton (1983) and 
Clayton and Cuzick (1985) to fit linear proportional hazards models and by Gentleman 
and Crowley (1991) to fit additive proportional hazards models. 

Only the first iteration will be used in the recursive partitioning procedure to grow the 
tree and select the tree size. The Breslow estimator evaluated at {6{s, = 1: h E Tf, which is 
the Nelson (1969) cumulative hazard estimator, is used. The one-step estimate of Oh is 

-EiESI, AO(t1) 

which can be interpreted as the observed number of deaths divided by the expected number 
of deaths in node h under the assumption of no structure in survival times. Hence, even 
the one-step procedure gives interpretable quantities for each node. 

The full likelihood deviance measures how well the tree fits the data. The deviance for 
node h is 

R(h) = 2{Lh(saturated) - Lh1( 0h, 

where Lh1(saturated) is the log-likelihood for the saturated model that allows one parameter 
for each observation, and Lh(Oh) is the maximized log-likelihood when Ao(t) is known. It 
can be shown that the deviance residual for an observation i in node h is 

F ( NtU )1 di= 2 &log \\A~1619-(& - MOOtb)1 

The residual is equivalent to the deviance residual based on the Poisson model with 
response &i and mean ?i = Ao(tj)6,. The recursive partitioning procedure calculates one- 
step deviance residuals with the Nelson estimate substituted for Ao(t), and with the 
one-step parameter estimates {60j: h E T}. The connection between the proportional haz- 
ards full likelihood and the Poisson model likelihood has been used by several authors 
including Clayton (1983) and Clayton and Cuzick (1985). 

3. The Algorithm 

The algorithm adopts the important aspects of the CART algorithm. A large tree is grown 
to avoid missing important structure. The cost-complexity pruning algorithm of CART 
obtains an optimal sequence of subtrees (subtrees are obtained by removing branches from 
a tree). Finally, an estimate of expected one-step deviance is calculated for each of the 
pruned subtrees by cross-validation and the tree that minimizes the estimated deviance is 
chosen as the best tree. 

Recursive partitioning algorithms split the covariate space based on a rule that maximizes 
some measure of improvement. Our algorithm will split the data and the covariate space 
into regions that maximize the reduction in one-step deviance realized by the split. Many 
types of partitions could be considered; however, we will consider only splits on a single 
variable. All possible splits for each of the covariates are evaluated and the variable and 
split point resulting in the greatest reduction in the one-step deviance are chosen. Usually, 
there is a rule regarding the minimum size of a node, since if very small nodes are permitted 
the algorithm often splinters off small groups of observations resulting in trees that do not 
validate well. Let N be the total number of observations in the learning sample. The 
improvement for split s at node h into daughter nodes l(h) and r(h) is 

R(s, h) = R(h) -[R(l(h)) + R(r(h))], 
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Relative Risk Trees for Censored Survival Data 415 

where 

R(h) = i , [&ilog ) - - Ao(ti)6;)1. 
The binary splitting continues until a large binary tree is grown and there are only a few 
observations in each node. 

In a simulation experiment it has been shown that the performance of the reduction in 
the one-step deviance is very similar to the log-rank test statistic used in the tree-based 
methods of Segal (1988) and Ciampi et al. (1986) (LeBlanc, unpublished Ph.D. thesis, 
Department of Biostatistics, University of Washington, 1989). Our splitting statistic is 
chosen because of the direct analogy with splitting based on the reduction of mean residual 
sums of squares in the CART regression algorithm. 

3.1 Pruning and Tree Selection 

The cost-complexity of a tree is defined (Breiman et al., 1984) to be 

Ra(T)= > R(h)+ajITj, 

for a nonnegative complexity parameter a, where R(h) is the impurity of node h defined 
above. 

The cost-complexity measure controls the tradeoff between the size or complexity of the 
tree, and how well the tree fits the data. If the complexity parameter a is large the tree that 
minimizes the cost complexity is small and as a decreases the tree that minimizes the cost 
complexity increases in size. We will choose trees that minimize the cost complexity 
measure just as is done in CART; these are called optimally pruned subtrees. In the next 
definition, the symbol "<" means "is a subtree of." 

Definition 3.1. T, is an optimally pruned subtree of T for complexity parameter a, if 

R,(TI) = min R,(T'), 
T'- T 

and it is the smallest optimally pruned subtree if T, < T" for every optimally pruned 
subtree T". Let T(a) denote the smallest optimally pruned subtree of T for complexity 
parameter a. 

Breiman et al. (1984) show that for the cost-complexity measure there is a unique smallest 
optimally pruned subtree for any complexity parameter a. They also show that as a 
increases, the optimal sequence of subtrees is a nested sequence of trees and that there is 
an efficient algorithm for obtaining the optimal sequence of subtrees. 

The expected one-step deviance for the pruned trees is estimated by V-fold cross- 
validation. The data Y? are divided up into V sets Yi and subsamples Z(L) = Y - TV of 
about equal size, and trees T, are grown from the subsamples 2(v). For any ax, an optimally 
pruned subtree, TLa(a), and estimates 6)(v): h E T(oa) are obtained. For each tree T1, 
approximately 1/ V of the data is run down the tree. We evaluate the performance of the 
tree-based model generated with the sample Y(v) with the sample 2,. The cross-validated 
deviance residual for individual i not in the sample used to grow the tree is 

1( , v) = [ ( uv)) (&h .0 -1(VI 

where AtO(t1) is based on S~. Let oa* be the value of complexity parameter ax that minimizes 
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the average cross-validated deviance residuals for trees Tv(a) over the V subsamples. Note 
that in the cross-validation procedure we have described, the entire tree-growing process is 
repeated for each subsample. If the tree-structured model was fixed so that only the 
estimates for each node were recalculated, then the procedure would underestimate the 
expected deviance of the trees. For a detailed description of cost-complexity pruning and 
selection of tree size, readers are again referred to Breiman et al. (1984). 

A problem arises when calculating the cross-validated estimates for censored data. If all 
the observations in node h are censored in the subsample used to grow the tree, the estimate 
06, is 0. Now if some of the observations in the validation sample for that node are 
uncensored, the cross-validation estimate of the expected deviance is infinite. Since zero 
hazard estimates and infinite deviance are unrealistic, an adjustment is needed. In the 
parametric setting T. Therneau (personal communication) has suggested shrinkage esti- 
mators to avoid the problem of estimated hazard functions of zero. However, a simple 
ad hoc solution is to replace nodes with zero observed deaths with .5, similar to what is 
suggested by Davis and Anderson (1989) for exponential likelihood. Then, the estimate of 
Sk for cross-validation is 

2 Aioes, Ato(t1) 
for a node h that has no observed deaths. 

After choosing a tree T(a*) minimizing the cross-validated estimate of the expected one- 
step deviance, maximum likelihood estimates of the relative risk between nodes are obtained 
by iterating on equations (1) and (2), which does not involve any matrix inversion. 
Convergence is rapid; this is unlike the additive model where convergence of this method 
can be extremely slow (Gentleman and Crowley, 1991). 

It is well known that the size of the trees selected by minimizing the cross-validation 
estimate of prediction error can be quite variable. The addition of some technique to choose 
simpler trees that perform not substantially worse in terms of prediction error than the tree 
minimizing the cross-validation estimate of prediction error, such as the "1 SE" rule of 
Breiman et al. (1984), would be useful. However, further study of such rules is needed, 
especially in the censored data setting. One likelihood-based approach is suggested by Davis 
and Anderson (1989). 

4. One-Step Scores 

One-step weighted least squares scores are an alternative to the full likelihood deviance 
measure of tree performance. The adjusted dependent variable (McCullagh and Nelder, 
1983) and weights can be calculated if Ao(t) is assumed to be known. The adjusted dependent 
variable, yi, for individual i in node h in our parameterization is 

hi 
- Ad(t1) 

and the weight is 

Ao(ti) 
Wi = 

The impurity of the node is based on the weighted sum of squares for the node. Again, 
substitute the Nelson estimate of the cumulative hazard Ao(t) for A0(t). Let vt~, be the 
weight function above defined at 6,l = 1. Then the weighted least squares score for 
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node h is 

R (h) = ) - 6) 

- 1 (&~~1 - (j~) 

=-N iS AO(t1) (3) 

The factor &i - AO"(ti)01, is called a martingale residual by Therneau et al. (1990). It can be 
interpreted as the number of observed deaths for individual i minus an estimate of the 
expected number of deaths under the assumption of the tree-structured proportional hazards 
model. 

The value of 0X, that minimizes (3) is 

ies, bi 

0/7 
tiE 

S, A( t1 
)f 

which is the maximum likelihood estimator of 0X, with AO(t) substituted for Ao(t). 
The weighted least squares approach permits easy implementation, since the CART 

regression algorithm need only be changed to include a weight function for each observation. 
In addition, there are simple updating formulas for weighted least squares for rapidly 
calculating splitting statistics. 

Therneau et al. ( 1990) use martingale residuals directly in the CART regression algorithm 
with squared error loss. The mean of the martingale residuals in a node is the summary 
statistic for their proposal. However, if the proportional hazards assumption is roughly 
correct, the one-step estimates of 0h developed here seem to have a better interpretation 
since each is the ratio of observed to expected deaths in the node under the assumption of 
no structure. 

4.1 Alternative Weights 

Different weights can be easily incorporated into the least squares scores to allow possibly 
more robust tree-structured survival analysis than that based on the proportional hazards 
model. 

Let w(t) be a weight function at time t. An alternative least squares score for node h is 

R(h) I - (w(ti)b& - 0/, f0 w(s)Y1(s) dAO(s))2 
N ies,2 ~f 

'I 
*l(S) Yi (S) io) 

where Y, = IIT>,. The estimate of 0X, that minimizes R(h) is 

I L ~ ies, W(t)&i 

0 es fo w"(s)Yi(s) dAo(s) (4) 
The estimate 0X1. is an estimate of the ratio of the weighted number of observed deaths in 
node h to the weighted number of expected deaths under the assumption of no structure. 
The weight function can be chosen to focus on survival differences of interest between 
nodes. For instance, if one wanted estimation insensitive to late differences, a weight 
function that is a decreasing function of time would be appropriate. Two examples of 
weight functions that may be useful are w(t) = Fest(t), where Fest(t) is the Kaplan-Meier 
estimate of the survival function for the entire learning sample, and v(t) =t - where c 
is some positive constant. The resulting estimates 0X1} have a connection with the estimates 
studied by Sasieni (unpublished Ph.D. thesis, University of Washington, 1989). 
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5. Simulation Experiment 

A simulation study was done to investigate the performance of the one-step full likelihood 
method, and to compare it to the martingale residual technique proposed by Therneau et 
al. (1990) and the exponential log-likelihood method of Davis and Anderson (1989). Since 
the recursive partitioning techniques do not use the same loss function, an estimate of 
expected deviance based on the true survival distribution was used to assess the performance 
of the procedures. 

5.1 Method 

We simulated data from a total of five models. In each case there were five covariates, 
X, ... , X5, independent and uniformly distributed over the unit interval. Members of the 
HP(t, p) family (Harrington and Fleming, 1982), 

JI - (1 + pt~,t-Y~p ifp > 0, F(t; A, p) Pr(U < t; p p) - {1-e-t if p 0, 

were used to generate survival times, and censoring times were chosen to be uniformly 
distributed on (0, a). 

We considered five different survival models where 0 = log(A): 

A: 0= 0, P 0; 

B: 0s = I'i f lnx-)i>. 5 P 0; 

C: 0i= 3.0x1 + lOx21, p = 0; 

D: 0'= I 
5.qj-l2n.v-,j>.5 

+ .367, p=1; 

E: 0i = 3.0x1i + 1.0x2j + .367, p = 1. 

For models B, C, D, and E, the survival distribution depends on two of the five 
measurement variables. Models B and D specify one region of the measurement space to 
correspond to poor prognosis. In models C and E, 0 is linear in xi and x2; for models A, B, 
and C, the survival distributions are exponential and hence they are proportional hazards 
models. Models D and E have decreasing hazard ratios over time between points in the 
measurement space. Parameters for models D and E were chosen such that at any point in 
the covariate space, the median survival is the same as for models B and C, respectively. 

The five models were examined for a sample size of n = 250 observations. Only 
model C was simulated with a sample size of n = 500 observations. Two hundred fifty 
samples were generated from each survival model and censoring distribution. The minimum 
node size permitted for splitting was 20 observations. 

Each of the methods selects the pruned subtree minimizing the tenfold cross-validation 
estimate of the prediction error for that method. 

The estimates of the expected losses for the trees were calculated by sending 2,500 
observations generated by the same model down the pruned trees. 

5.2 Res-llts 

Results on the number of terminal nodes for the three methods are presented in Table 1, 
and on the estimated expected deviances in Table 2. 

No strulctulre If the failure time distribution does not depend on the measurement variables, 
the recursive partitioning technique should not falsely detect structure. For data generated 

This content downloaded from 200.17.213.161 on Mon, 27 May 2013 09:07:48 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Relative Risk Trees for Censored Survival Data 419 

Table 1 
The number of terminal nodes for one-step full likelihood (FL), martingale residuals (MR), and 

exponential likelihood (EX) methods for data generatedffrom models A-E 
No censoring 50% censoring 

Model and Number of terminal nodes Number of terminal nodes 
method 1 2 3 4 5 -6 1 2 3 4 5 -6 

A (n = 250) 
FL 94.4 3.2 1.2 .8 .4 .0 95.6 3.6 .4 .4 .0 .0 
MR 94.8 1.6 1.6 1.6 .4 .0 93.6 4.0 1.2 1.2 .0 .0 
EX 93.2 4.0 1.2 1.2 .4 .0 94.8 3.2 1.6 .0 .0 .4 

B (n = 250) 
FL 10.8 4.4 64.0 11.6 4.4 4.8 33.6 10.4 38.4 10.8 4.0 2.8 
MR 26.4 16.4 28.0 14.0 7.2 8.0 29.2 14.0 38.8 9.2 5.2 3.6 
EX 12.8 4.4 60.8 13.6 3.6 4.8 35.2 10.4 37.6 11.2 4.0 1.6 

C (n = 250) 
FL .0 6.0 18.4 9.2 14.4 52.0 .0 34.0 26.4 12.0 11.6 16.0 
MR .0 17.6 8.8 12.0 14.4 47.2 .0 36.8 23.2 13.2 8.4 18.4 
EX .0 10.0 18.0 11.6 15.2 45.2 .0 33.2 26.0 13.6 6.8 20.4 

D (n = 250) 
FL 79.6 7.2 8.0 2.8 1.2 1.2 70.4 9.6 10.4 6.0 1.6 2.0 
MR 78.8 8.8 6.8 2.0 1.6 2.0 68.0 10.4 10.0 5.6 2.8 3.2 
EX 74.4 6.8 4.4 3.2 4.8 6.4 74.8 8.8 8.0 3.6 2.4 2.4 

E (n = 250) 
FL 2.0 55.6 15.2 10.0 6.8 10.4 2.4 61.6 15.2 6.8 5.6 8.4 
MR 1.2 58.8 12.8 9.6 6.0 11.6 2.0 53.2 14.8 12.0 6.4 11.6 
EX 38.8 25.2 12.0 7.2 6.0 10.8 5.6 60.0 12.0 7.2 6.8 8.4 

from model A, Table 1 shows that for all three techniques more than 93% of the trees 
consisted only of the root node. 

Model A was also investigated with uneven censoring. For x1i < .5 the censoring 
distribution was U(0, y1) and for x1i > .5 the censoring distribution was U(0, 2). The 
parameters 71 and Y2 were chosen so that there was approximately 20% and 50% censoring 
in the corresponding regions of the measurement space, respectively. Table 2 shows that 
there were no important differences between expected deviance for the methods for uneven 
censoring compared to no censoring. Also, there were no significant differences in the 
distribution of tree complexities. The more general problem of censoring related to 
covariates was not investigated. 

Structure The simplest tree representing the structure for model B would have three 
terminal nodes with splits at about xi = .5 and x2 = .5. Although such a parsimonious tree 
may not be found, Table 1 shows that for the three methods and for both the uncensored 
and 50% censoring cases, the modal number of terminal nodes is three. The martingale 
residual (MR) technique selected the largest proportion of trees with no structure, 26% in 
the uncensored case. Table 2 shows that for uncensored data the estimated expected 
deviance is larger for the MR technique than for the other techniques for uncensored data. 

In the case of 50% censoring, differences in expected deviances between the MR, full 
likelihood' (FL), and exponential likelihood (EX) methods are not evident based on the 
number of simulations performed. 

For uncensored data generated from model C, Table 1 shows that the tree size is 
extremely variable for the three methods. With 50% censoring the methods again have 
similar distributions of tree sizes with a smaller average selected tree size and increased 
expected deviance. 
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Table 2 
Estimated expected deviances for one-step full likelihood (FL), martingale residuals (MR), and 
exponential likelihood (EX) methods for data generated from models A-E. Standard errors of 

estimates are given in parentheses. 
Recursive partitioning technique 

Model FL MR EX 
A (n = 250) 
No censoring 292.1 (.79) 291.4 (.69) 292.0 (.79) 
50% censoring 295.0 (1.04) 295.3 (1.10) 295.3 (1.17) 
Uneven censoring 292.2 (.80) 292.0 (.78) 292.7 (.89) 

Expected true model deviance = 288.6 

B (n = 250) 
No censoring 313.7 (1.42) 321.7 (1.07) 314.1 (1.44) 
50% censoring 331.2 (1.86) 331.0 (1.74) 331.1 (1.70) 

Expected correct model deviance = 288.6 

C (n = 250) 
No censoring 345.3 (1.24) 349.3 (1.34) 344.2 (1.21) 
50% censoring 383.9 (2.18) 374.3 (1.97) 380.3 (2.13) 

Expected correct model deviance = 288.6 

D (n = 250) 
No censoring 325.1 (.67) 326.1 (.69) 327.8 (.72) 
50% censoring 327.6 (.77) 328.1 (.81) 327.0 (.74) 

Expected correct model deviance = 308.2 

E (n = 250) 
No censoring 342.7 (.89) 342.7 (.82) 357.4 (1.40) 
50% censoring 347.1 (1.07) 347.1 (1.05) 347.6 (1.08) 

Expected correct model deviance = 308.2 

C (n = 500) 
No censoring 667.8 (1.31) 680.0 (1.65) 666.1 (1.31) 
50% censoring 721.2 (3.10) 714.8 (3.04) 722.0 (3.13) 

Expected correct model deviance = 577.2 

To investigate the behavior of the recursive partitioning procedures in a nonproportional 
hazards setting, H' survival times were considered in model D. Table 1 shows that all of 
the methods do poorly. The FL, MR, and EX methods each selected trees consisting only 
of the root node in more than 65% of the cases. 

In the case of H1 distributed survival times of model E, the techniques FL and MR still 
detect structure with high probability; however, the average size of a selected tree is smaller 
than for the model with proportional hazards, model C. The performance of the EX method 
is much poorer for uncensored data, with 39% of the trees consisting only of the root node, 
compared to less than 5% for any of the other methods. The expected H1 deviance of the 
EX technique is "also substantially larger than for the other methods. 

Only model C was considered with a sample size of n = 500 observations. Table 2 again 
shows that the martingale residuals do not perform as well as the other two methods in 
uncensored data. However, with approximately 50% censoring the MR method has smaller 
estimated expected deviance than the other two recursive partitioning methods. 

In summary, the simulations revealed several differences in performance among the 
different methods. For uncensored exponential survival times, the martingale residual 
method did not perform as well as the other methods. Also in the case of exponential 
survival times, the performance of the one-step full likelihood method was similar to the 
method based on the correct parametric likelihood, which is expected to perform the best. 
In addition, the one-step full likelihood method performed substantially better than the 
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parametric method when the data were not exponentially distributed, suggesting that it is 
an attractive nonparametric alternative. 

6. Example 

Survival for patients with myeloma, a cancer of the plasma cells of the bone marrow, is 
strongly associated with age and several laboratory values. In designing clinical trials for 
myeloma, it is important to protect against possible imbalance of these prognostic factors 
across treatment groups. Several investigators (Durie and Salmon, 1975; Medical Research 
Council, 1980) have produced staging or prognostic classification schemes for myeloma 
that are used for this purpose. However, an unattractive feature of these schemes is that 
they are based on a variable, tumor mass, that is difficult to determine. A current research 
goal is to develop a prognostic stratification for myeloma patients based on easily measured 
variables that could be used as a new staging rule. 

This data set is based on 614 patients from a randomized clinical trial for myeloma 
collected by the Southwest Oncology Group between 1982 and 1987; see Salmon et al. 
(1990). Five variables previously known to be associated with survival-namely, age, serum 
calcium, serum albumin, serum creatinine, and serum f2 microglobulin-were considered 
for development of a new prognostic stratification or staging system. There are missing 
values on some covariates for about 70 patients; these observations were included in tree 

sb2<=5.4I 
m=29.8 

alb<=3.8 sb2<=24.6 

m=36.2 m=20.3 

m=5 

r=4.07 

22 
cal<=10 age<=66 age<=72 

m=31.5 m=44.3 m=22.1 

m=35.6 m=22.6 m=61 m=26.9 m=13.9 

r=1.00 r=1.84 r=.545 r=1.45 r=2.74 

158 46 113 29 54 
cal<=1 1.5 

m=24.3 

m=26 m=9.6 

r=1.22 r=3.01 

158 34 

Figure 1. Pruned survival tree for the myeloma data. Median survival in months (m) is given below 
each node. The relative risk estimate (r), for node h, O,1/O1, is given below each terminal node. 
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analysis by using the surrogate splitting ideas of Breiman et al. (1984). Approximately 34% 
of the observations are censored. 

A tree was grown with a minimum node size of 20 patients. The node size was not 
chosen to be smaller because extremely small prognostic groups are not of interest for 
staging and because of the savings in computation time. The one-step full likelihood 
selected a tree with eight terminal nodes (Figure 1). The covariate and its split value are 
indicated above each split on the tree. There are splits on four variables; high values of the 
measurement variables correspond to poorer prognosis except for serum albumin, for which 
the opposite is true. Kaplan-Meier estimates for each of the terminal nodes are presented 
in Figure 2. 

Recently, there has been discussion in the literature regarding the use of serum O2 
microglobulin for development of staging schemes (Durie et al., 1990; Child et al., 1983; 
Garwell et al., 1984). This analysis supports the consensus that serum /2 is an important 
prognostic factor. The first split in the tree is on serum 2 microglobulin and divides the 
data into two groups with median survival of 36 months and 20 months. A small group of 
patients with high serum /2 and poor prognosis is also split off. 

At this point the investigator may want to reduce the number of groups further. 
Algorithms for amalgamating the nodes can be constructed and/or the investigators' clinical 
knowledge may suggest specific groupings. In either case, recursive partitioning seems to 
be a useful tool for helping the investigator form prognostic groups of patients. 

1 n=158 
2 n=46 

: ~ 3 .=1 13 
4 n=29 

CO K- l 

65 5 n=158 
L11 ~~~~~~~~~ ~6 n=34 

~~~~~~ ~~~~~7 n=54 
Li ~~~~~~~~8 n=22 

L 

Cl) 

C\J 

0 20 40 60 

Months 
Figure 2. Kaplan-Meier estimates for the terminal nodes given in Figure 1. 
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7. Discussion 

This method of extending the proportional hazards regression to tree-structured relative 
risk functions performed well on simulated data with proportional hazards survival struc- 
ture. The method yields interpretable one-step summaries for the terminal nodes of the 
tree, and full likelihood estimates of the relative risk between observations in nodes can be 
obtained by an iterative procedure. Weighted least squares scores allow implementation of 
the algorithm into existing recursive partitioning computer code. The least squares score 
has not been extensively compared in a simulation study to the one-step full likelihood 
method; however, in the many examples considered it yielded results similar to those of 
the one-step full likelihood. 

One referee has suggested that the use of the Mantel-Haenszel estimator studied by 
Crowley, Liu, and Voelkel (1982) may yield an improved tree-based procedure that is still 
computationally efficient. The use of the Mantel-Haenszel estimator in tree-based methods 
for survival data should be studied. 

We have not described the analytical properties for the pictures and estimates obtained 
by this procedure. Some consistency results are available for classification and regression 
trees (Breiman et al., 1984; Gordon and Olshen, 1980, 1984). These results can be extended 
to show that the estimates of the conditional survival function are also consistent (Butler 
et al., unpublished technical report, Stanford University, 1989) and that Mantel-Haenszel 
and Cox-type estimates of the relative risk between a finite number of points in the covariate 
space converge in probability to the true relative risks if the proportional hazards model is 
true. We have not yet shown a uniform convergence result for our relative risk estimate. 
However, there is some question as to the practical relevance of results of this type since 
they do not apply to the recursive partitioning algorithms as they are almost always 
implemented. To obtain these consistency results there must also be a sufficient number 
of observations in the nodes as trees grow. This can be done by considering quantile splits 
as described by Gordon and Olshen (1984). In addition, the mesh must go to zero; this can 
be implemented by taking at least some small proportion of the splits to be on each 
covariate. The latter restriction is an unattractive modification to our highly adaptive 
regression procedure. 

The methods discussed in this paper can be executed fast enough for interactive data 
analysis since updating algorithms allow splits to be evaluated using O(N) calculations. We 
believe that interactive tree-structured survival analysis will be a useful adjunct to the tools 
currently used by those who analyze censored survival data, especially when primary 
interest is in defining several groups of patients with important differences in survival. 
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RESUME 

Une methode est developpee pour obtenir, at partir de donnees de survie censurees, des estimateurs 
du risque relatif deduits d'une structure d'arbre. La premiere tape d'une procedure d'estimation 
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reposant sur la vraisemblance complete est utiWis&e dans un algonrthme de partitionnement recursif 
qui reprend en grande partie l'algon'thme, largement utilise, de Classitication et Arbre de Regression 
(CART) de Breiman et coll. (1984, Classification and Regression Trees, Belmont, California: 
Wadsworth). La performance de la technique est 6valuee par simulation, et comparee aux methodes 
d'6tude de la survie par structure d'arbre proposees par Davis et Anderson (1989, Statistics in 
Medicine 8, 947-961) et Therneau, Grambsch, et Fleming (1990, Biometrika 77, 147-160). 
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